## Installations of IDEC Intrinsically Safe System

 Type EB3C-N-2 Relay BarrierWhen installing an IDEC Type EB3C-N-2 Relay Barrier, make sure it conforms to the following drawings and descriptions as well as all applicable requirements. ANSI/NFPA70.

- This associated apparatus may also be connected to simple apparatus as defined in Article 504.2 and installed and temperature classified in accordance with Article 504.10(B) of the National Electrical Code (ANSI/NFPA 70), or other local codes, as applicable.
- Capacitance and inductance of the field wiring from the intrinsically safe equipment to the associated apparatus shall be calculated and must be included in the system calculations. Cable capacitance, Ccable, plus intrinsically safe equipment capacitance, Ci must be less than the marked capacitance, Ca (or Co), shown on any associated apparatus used. The same applies for inductance (Lcable, Li and La or Lo, respectively). Where the cable capacitance and inductance per foot are not known, the following values shall be used: Ccable $=60 \mathrm{pF} / \mathrm{ft}$., Lcable $=0.2 \mu \mathrm{H} / \mathrm{ft}$.
- Where multiple circuits extend from the same piece of associated apparatus, they must be installed in separate cables or in one cable having suitable insulation. Refer to Article 504.30(B) of the National Electrical Code (ANSI/NFPA 70) and Instrument Society of America Recommended Practice ISA RP12.6 for installing intrinsically safe equipment.
- Intrinsically safe circuits must be wired and separated in accordance with Article 504.20 of the National Electrical Code (ANSI/NFPA 70) or other local codes, as applicable.
- This associated apparatus has not been evaluated for use in combination with another associated apparatus.
- Control equipment must not use or generate more than 125 V rms or 125 V dc with respect to earth.

Warning! Substitution of components or unauthorized repair may impair intrinsic safety of apparatus.
To maintain intrinsic safety, the Signal input terminal ( $\mathrm{Pn}-\mathrm{Nn}$ ) may only be connected to intrinsically safe circuits where both the wiring and the connected equipment maintain 500 V isolation to the hazardous area earthing/bonding connections.
AVERTISSEMENT - La substitution de composants peut compromettre la sécurité intrinsèque de l'appareil.
Wiring Example (IS terminals: $\mathbf{P n}=+, \mathbf{N n}=-$ )

Channel separate wiring (any one channel)
HAZARDOUS (CLASSIFIED) LOCATION
Class I, II and III, Division 1, Groups A, B, C, D, E, F and G
Class I, Zone 0, [AExiaGa] IIC


Channel common wiring (Common max. 16 between any $\mathrm{Pn}(+)$ terminals and any $\mathrm{Nn}(-)$ terminal )
Note:To set up common wiring, connect two "N" terminals between adjoining Relay Barriers in parallel.
HAZARDOUS (CLASSIFIED) LOCATION Class I, II and III, Division 1, Groups A, B, C, D, E, F and G


- Rating and Parameters of I.S.
$\mathrm{Ta}=60^{\circ} \mathrm{C}, \mathrm{Um}=125 \mathrm{~V}, \mathrm{Uo}=13.2 \mathrm{~V}, \mathrm{IO}=14.2 \mathrm{~mA}, \mathrm{Po}=46.9 \mathrm{~mW}$ at each channel $\mathrm{Pn}-\mathrm{Nn} \mathrm{Io}=227.2 \mathrm{~mA}, \mathrm{Po}=750 \mathrm{~mW}$ at max 16 channels $\mathrm{Pn}-\mathrm{Nn}$

|  | 14.2 | 28.4 | 42.6 | 56.8 | 71.0 | 85.2 | 99.4 | 113.6 | 127.8 | 142.0 | 156.2 | 170.4 | 184.6 | 198.8 | 213.0 | 227.2 | $\begin{aligned} & \text { Combined } \\ & \text { Lo }(\mathrm{mH}) \\ & \hline \end{aligned}$ | Note 2 The intrinsic safe apparatus and wirings shall be accordance to following formulas; for examples, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Po(mW) | 46.9 | 93.8 | 140.6 | 187.5 | 234.3 | 281.2 | 328.1 | 374.9 | 421.8 | 468.6 | 515.5 | 562.4 | 609.2 | 656 | 702.9 | 750 |  |  |
| O( $\mu \mathrm{F}$ ) | 0.67 | 0.65 | 0.63 | 0.61 | 0.59 | 0.57 | 0.55 | 0.53 | 0.51 | 0.49 | 0.47 | 0.44 | 0.42 | 0.39 |  |  | 1. |  |
|  | 0.79 | 0.77 | 0.76 | 0.75 | 0.73 | 0.72 | 0.70 | 0.69 | 0.67 | 0.66 | 0.64 | 0.62 | 0.61 | 0.59 | 0.57 | 0.55 | 0.5 |  |
|  | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.93 | 0.92 | 0.91 | 0.90 | 0.88 | 0.87 | 0.86 | 0.85 | 0.84 | 0.2 |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Note 1 Added to above table, the next values combined Lo and Co are allowable;

| lo(mA) | 14.2 |  |  |  |  |  |  | 28.4 |  |  |  |  |  |  | 227.2 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lo(mH) | 176* | 88.0 | 2.50 | 1.60 | 0.84 | 0.48 | 0.25 | 44.0* | 22.0 | 3.50 | 1.40 | 0.76 | 0.45 | 0.25 | 0.68* | 0.68 | 0.60 | 0.42 | 0.30 | 0.22 | 0.15 |
| $\mathrm{Co}(\mu \mathrm{F})$ | 0.94* | 0.47 | 0.55 | 0.60 | 0.70 | 0.80 | 0.94 | 0.94* | 0.47 | 0.48 | 0.60 | 0.70 | 0.80 | 0.93 | 0.94* | 0.45 | 0.49 | 0.60 | 0.70 | 0.80 | 0.94 |


| Ui | $\geq \mathrm{Uo}$ |  |
| :--- | :--- | :--- |
| li | $\geq$ | lo |
| Pi | $\geq \mathrm{Po}$ |  |
| $\mathrm{Ci}+\mathrm{Cc}$ | $\leq \mathrm{Co}$ |  |
| $\mathrm{Li}+\mathrm{LC}$ | $\leq \mathrm{LO}$ |  |

*: Therefore, the values are allowable only at $\mathrm{Li}<1 \% \mathrm{Lo}$ or $\mathrm{Ci}<1 \% \mathrm{Co}$ of the intrinsic safe apparatus.

## Note

1. Use intrinsically safe equipment that is UL or simple apparatus (a device which will neither generate nor store more than $1.5 \mathrm{~V}, 0.1 \mathrm{~A}, 25 \mathrm{~mW}$ such as switches, thermocouples, LED's and RTD's).
2. Install the EB3C-N-2 relay barrier in compliance with the enclosure, mounting, spacing, and segregation requirements of the ultimate application.
3. Make sure that the control equipment connected to the EB3C-N-2 relay barrier does not use or generate more than 125 Vrms or $125 \mathrm{Vdc}(\mathrm{Um}=125 \mathrm{~V}$ ).
4. Make sure that all bolts, nuts, screws, and other means of fastening, including the unused wiring screws, are fastened in place, properly tightened and secured. Mount the EB3C-N-2 on a 35 mm track or directly on a panel surface using screws.
5. Make the layout and wiring so as to prevent the electromagnetic or electrostatic inductions to the intrinsically safe circuit. For example, separate the intrinsically safe circuit from the non-intrinsically safe circuit by a minimum space of 50 mm or using a full height metal separator. If color-coding is required for the intrinsic safe components and terminals, use only cables and terminals with light blue markings.

■ General Specification

| Power Supply | 100 V to 120V AC (50/60Hz) <br> 24 V DC Class 2 |
| :--- | :--- |
| Operating Temperature | -20 to $60{ }^{\circ} \mathrm{C}$ (no freezing) |
| Operating Humidity | 45 to 85 RH (no condensing) |
| Pollution Degree | 2 |
| Altitude | 2000 m under |
| Dielectric Strength | Between intrinsically safe circuit and <br> non-intrinsically safe circuit :1526.4V |
|  | Between AC power and signal <br> input:1500V AC |

- Power consumption Note : ( ) is shown as not for standard sale product.

| Number of <br> Circuit | AC power supply(VA) |  | DC power supply (W) |  |
| :---: | :---: | :---: | :---: | :---: |
|  | at 120V AC(50/60Hz)(MAX) | at 26.4V DC (MAX) |  |  |
|  | R | T | R | T |
| 01 | 4.1 | 3.8 | 1.1 | 1.0 |
| 02 | 4.7 | 4.2 | 1.4 | 1.2 |
| 03 | 5.4 | 4.5 | 1.7 | 1.3 |
| 05 | 6.6 | 5.2 | 2.4 | 1.7 |
| 06 | 7.2 | 5.5 | 2.7 | 1.8 |
| 08 | 8.3 | 6.1 | 3.3 | 2.2 |
| 10 | 9.6 | 6.7 | 3.9 | 2.5 |
| 08 C | 8.3 | 6.1 | 3.3 | 2.2 |
| 16 C | $(12.6)$ | 8.6 | 5.8 | 3.5 |
| $16 \mathrm{C}-\mathrm{C}$ | $(12.6)$ | $(8.6)$ | 5.8 | 3.5 |

